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Brains have sparse irregular 
and dynamically developed 

neural network connections, 
while artificial networks are 

rigid and non-adaptable? 

➢ Artificial neural networks usually only adjust weights (and other parameters), 
but their structure of connections is rigid, regular, and not data-driven.

➢ Sparse, attention-like connections are more effective than rigid ones.

➢ The process of developing a neural network structure should be done 
concurrently with the process of adapting its weights to process data better.

✓ Associative Self-Optimizing Neural Networks (ASONN) 
are a neural network type that quickly develops sparse, 
well-generalizing and cost-effective structures that 
reproduces essential data relationships.

✓ ASONNs are fully explainable (models & results).

✓ ASONN’s development process is based on association 
and aggregation of similar features and objects 
yielding 100% class discrimination for training data.

✓ ASONNs use only the most discriminative and cheapest 
input features to discriminate classes using different 
sub-hyperspaces called hypercuboids. 



ASONN classifiers are built on a sparse Associative Graph Data Structure (AGDS) that counts and aggregates 
all duplicate data points and orders all feature nodes for each data attribute separately.
Next, AGDS contextually connects the feature nodes (values) to the object nodes (training examples). 
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Class labels can be associated with object nodes (representing training examples) in the same way as 
the other features, so AGDS does not require to predefine a class label attribute, which can be chosen later.

證

Setosa Versicolor Virginica
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ASONN structure consists of sparsely connected layers during construction:

1. Layer of value neurons (representing features)

2. Layer of object neurons (representing training examples)

3. Layer of range neurons (representing ranges of feature values)

4. Layer of combination neurons (representing combinations of ranges)

5. Layer of class neurons (representing class labels)

ASONN connections reflect 
the defined relationships 
between feature values, 
training examples, and classes 
in the training dataset and 
the definition of ranges and 
combinations determined by 
the construction algorithm 
for each discriminated class.

Sparse ASONN connections make natural attention to the most essential data-defining neurons!
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Main Ideas and Objectives of ASONN Structures and Networks are:

➢ ASONN structures use aggregated representation of the same features 
to associate objects with similar characteristics (i.e., sharing similar features).

➢ ASONNs create sparse connections to the most relevant features of objects (strong attention), 
avoiding misleading connections that can disrupt calculations in subsequent layers, unlike dense 
and deep networks.

➢ Weights reproduce natural similarities, frequencies, and rareness of object features allowing for 
prioritizing informative features (soft attention) and eliminating the need for extensive training.

➢ The ASONN construction algorithm identifies
fuzzy sub-hyperspace cuboids that effectively
define and differentiate training examples of
different classes.

➢ ASONNs achieve 100% training accuracy for
unambiguous training data and demonstrate
their generalization capabilities for test data.
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The ASONN construction identifies fuzzy sub-
hyperspace cuboids that represent groups of 
similar training examples from the same classes.
Definition 1. Hypercuboid is an area of the input 
data subspace defined by the combination of 
the value subranges of all or selected attributes 
defining training examples.
Each cuboid grows and encompasses as many 
features of training examples of one class (seeds) 
as possible, while minimizing the inclusion of 
features also defining training examples of other 
classes (weeds).
ASONNs ensure that every training example 
belong to at least one hypercuboid!
The search process always starts from the most 
correlated training examples because they are 
the most difficult to discriminate and encompass 
by hypercuboids. 

Definition 2. Seeds are all features of training examples from the same class as the class associated with 
the constructed hypercuboid, which are included in the expanded ranges defining this hypercuboid.

Definition 3. Weeds are all features of training examples from different classesthan the class associated with 
the constructed hypercuboid, which are included in the expanded ranges defining this hypercuboid.
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ASONN Construction Algorithm for any given training dataset follows the presented steps:

1. Transform training data into an Associative Graph Data Structure (AGDS), creating value, object, and class nodes.

2. Repeat until all objects are represented by at least one combination (representing a hypercuboid):

1. Choose an object (training example) to initiate the construction of a new combination (hypercuboid) based 
on its correlation to other objects, creating also a few range neurons constituting this new combination.

2. Repeat until adding the next value to the range-defining combination would result in representing an object 
of another class than the one represented by the constructed combination (hypercuboid):

1. Expand ranges with all values that represent 
only features of objects of a class represented 
by the constructed combination (hypercuboid).

2. Expand the range with the biggest expansion
coefficient value that is calculated as a sum of
seeds and weeds.

3. Remove all value and object nodes from the structure
because they do not compose the ASONN model,
but only range, combination, and class neurons. Fast structure construction and weights calculation!
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The ASONN construction process starts from the created AGDS structure for a given dataset, in which 
all nodes are transformed into neurons: Value Neurons (VNs), Object Neurons (ONs), and Class Neurons (CNs).

Step 0 All Steps

Next, the construction of hypercuboids is started, and every hypercuboid is constructed until at least 
one of the combination ranges can be expanded and the minimum number of discriminating 

features between these combinations is maintained (the detailed description available in the paper):



9

In the first step, we choose Object Neuron ON9 with the biggest correlation to all object neurons connected to 
the other classes than the class (CN – Iris-versicolor) to which the ON9 is connected.

ON9 initializes a new combination neuron (KN1) and connects it to ON9’ class (CN – Iris-versicolor),
where KN1 is initially defined by the single-value ranges (represented by Range Neurons - RNs)

taken from the Value Neurons (VNs) defining ON9.

Step 1 All Steps
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Ranges can be extended by the values that exclusively belong to the same class as the class (Iris-versicolor) 
represented by the associated combination (KN1).

Range Neurons (RNs) are subsequently connected to neighbor Value Neurons that are exclusively connected 
only to Object Neurons that represent the same class (CN – Iris-versicolor) as the constructed combination 
(KN1) representing the growing hypercuboid. In such steps, we add only Seeds (no Weeds) to the combination.

In a result, the next same-class Object Neurons (here ON10) can be added and connected to KN1.

Step 2 All Steps
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Ranges can be also extended by the values that belong to the same class as the class (Iris-versicolor) 
represented by the associated combination (KN1), but also are associated with objects of other classes.

Range Neurons (RNs) are subsequently connected to such neighbor Value Neurons expanding represented 
ranges of the constructed combination (KN1). In such steps, we try to add as many Seeds and as few Weeds 
as possible to the combination. Expanded ranges and grown hypercuboid support generalization!

In a result, the next same-class Object Neurons (here ON8) can be added and connected to KN1.

Step 3 All Steps
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In simple words, during the ASONN construction,
we expand ranges that define combinations that 
represent hypercuboids encompassing and 
discriminating training examples of the same classes.

During the ASONN construction, we try to establish 
the most beneficial expansions that add the most Seeds 
and the fewest Weeds to the constructed combination.

During the ASONN structure optimization process, 
we calculate coefficients (dir- and dir+) for each 
potentially expanded range and choose the one 
(for all ranges) that is the most beneficial.

Details available 
in the paper.
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When the training dataset is not updated over time (i.e., is static) and all objects (training examples) are 
represented by at least one combination neuron of ASONN, all value and object neurons together with 
their connections are removed, leaving the pure ASONN classifier structure consisting of range, combination, 
and class neurons.

Step 4 All Steps

Range neurons are additionally equipped with 
the Gaussian-cut-hat fuzzifying function to 
generalize outside the developed hypercuboids.

More details available 
in the associated paper.
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✓ For the calculation of weights, we use different ratios calculated on the basis of the number of Seeds and 
Weeds established for the expanded ranges, as well as the number of connected objects and features:

Details available 
in the paper.
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✓ In the associated paper, 
there is presented a 
pseudocode of the 
algorithm for expansion 
of ranges 
and combinations.

✓ The source code of the 
implemented algorithm 
is available on [14]:
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Starting from the Associative Graph Data Structure for a given dataset, the ASONN structure 
is developed in the fast construction process that creates range and combination neurons.

max-poolingmax-pooling

The final 
ASONN 

structure is
small, 

sparse, 
consistent, 
optimized,

and 
explainable!

The ASONN 
weights are 

quickly 
calculated 

not trained!

The expansions of the ranges and combination neurons for the 60-example dataset is presented above.
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The ASONN classification process is 
defined by the following steps:

1. Feed a test example (4.9, 3.0, 1.4, 0.2) 
to the ASONN input range neurons.

2. The range neurons representing 
the fed features produce outputs 
(in between 0 and 1) that stimulate
the combination neurons.

3. The combination neurons calculate 
their excitement and compete with 
the other combination neurons 
(in max-pooling operation) 
for the strongest reaction that is 
measured by the class neurons.

4. Finally, a soft-max layer is 
implemented on the output 
to designate the winning class.

The ASONN construction and classification processes look unimaginably 
simple in comparison to many contemporary deep network models, but 
the sparse and relation-sensitive connections replace many deep layers 

that must be trained in a long-lasting optimization process.

inputs

max-pooling
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The ASONN classification process is 
defined by the following steps:

1. Feed a test example (7.0, 3.2, 4.7, 1.4) 
to the ASONN input range neurons.

2. Range neurons representing 
the fed features produce outputs 
(in between 0 and 1) that stimulate
the combination neurons.

3. Combination neurons calculate their 
excitement and compete with 
the other combination neurons 
(in max-pooling operation) 
for the strongest reaction that is 
measured by the class neurons.

4. Finally, a soft-max layer is 
implemented on the output 
to designate the winning class.

The ASONN network and the classification process look unimaginably 
simple in comparison to many contemporary deep network models, 
but the sparse and relation-sensitive connections replace many deep 

layers that must be trained in a long-lasting optimization process.

inputs

max-pooling
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✓ The performance of the proposed ASONN network, constructed and adapted by the described algorithm, 
was tested on typical machine learning classification tasks and compared to other popular models.

✓ We used 52 representative datasets from the PMLB benchmark dataset [13], which have between 32 and 3200 instances 
and contain between 3 and 34 binary, categorical, and numerical features and define between 2 and 10 classes.

✓ We have removed datasets from comparisons for which some of the compared models failed to produce results. 

✓ The train and test sets were chosen in a ratio of 70:30.

Thanks to the automatically adaptable sparse structure and attention to the most essential features, 
ASONN v2 classification usually delivered the best results.

ASONN v1 and ASONN v2 differ mainly in the stop condition of the range extension algorithm.  



20

Associative Self-Optimizing Neural Networks (ASONN) 
allow for the very fast development of classifiers that

✓ work based on hypercuboids created in different sub-hyperspaces, 
optimizing their performance;

✓ have very sparse structure of connections which work like hard-attention 
reproducing key data relationships;

✓ do not require optimizing of hyperparameters unlike many other models;

✓ can adapt their structures and parameters simultaneously and automatically;

✓ can automatically take into account different costs of features and prefer these 
features which are the cheapest (producing cost-effective solutions);

✓ are robust, predictable, trustful, explainable, and well-generalizing;

✓ achieve very high performance that is similar to the best-performing classifiers 
(e.g., XGBoost) on vectorized data which objects are defined by 
the subgroups of similar features that can be automatically extracted and used.
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